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A method is described for integrating on a MN-7 analog computer
the energy equations relevant to a moving medium with heat sources,
for the two-dimensional adiabatic problem, allowing for compres-
sibility. Jet temperature and velocity fields for accompanying flows
in the combustion of methane, obtained by machine integration, are
presented.

The temperature fields of a burning jet are deter-
mined by the complex interaction of heat and mass
transfer processes in compressible turbulent jets m
the presence of internal heat sources. At the present
time we cannot obtain an exact analytical solution of
the system of equations describing this process.

A description is given in [1] of a method of approx-
imate integration on an analog computer of the heat
conduction equation with internal heat sources, to
determine the turbulent flame propagation velocity
in the conditions of the one-dimensional problem.

In that paper an attempt was made to determine
the temperature field of the flame formed by a homo-~
geneous fuel-air jet of finite thickness flowing in an
infinite accompanying stream of furnace gases. The
problem has been solved for the case of a compres-
sible medium, using the approximation hypothesis of
[2].

It was shown by Vulis [4] that on transition to the
generalized variables U =Vpu, V="Vpv, J =Vpc, AT
the equations of energy of motion, diffusion, and con~-
tinuity for compressible and incompressible media
become identical. This conclusion is approximate,
however, since in the transformation the continuity
equation is written in the form
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Numerous experimental data of a number of authors
confirm the basic position of the hypothesis that pu® =
= idem for compressible and incompressible flows,
and the validity is therefore confirmed of replacing
(1) by (2) for technical calculations. Hence an impor-
tant conclusion follows regarding the possibility of
using solutions obtained in conditions of incompres-
sibility for problems where compressibility of the
medium is taken into account in describing the pro-
cesses in the generalized variables. We give below
an approximate system of Eqs. (1) in generalized co-
ordinates, describing combustion in moving compres-
sible and incompressible streams, written in terms

of mean values, using the hypothesis that
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This system has the form
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where U =Vpu, V="Vpo, J =V pc,ATandC=VpAC.
We will call this system (I).

It is known that in the conditions of the adiabatic
problem (i + chemical energy = const), system (I)
may be replaced by the single Eq. (5), with the known
functions U = U(x,y) and V = V(x,y), which are de~
termined theoretically for incompressible media or
are found on the basis of correlation of test data, We
have assumed that the Vulis hypothesis is applicable
to turbulent jets in the presence of heat sources, i.e.,
to flames.

In solving the energy Eq. (5) in order to find the
quantity J, we made use of the scheme of the asymp-
totic boundary layer

&p = ka Uitax— i)
and the Prandtl number was taken equal to 0.75, i.e.,
0 =gy/e; = 0.75.

The energy equation is a nonlinear second-order
partial differential equation of elliptic type with two
independent variables. The coefficients U and V are
functions of x and y. The equation has also the non-
linear term qW(J).

The MN-7 analog computer does not permit simu-
lation of an equation of this type, and we therefore
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had to use an artificial method of solution. The most
tenable in this case is the method of lines [3], which
allows us to reduce the nonlinear partial differential
equation to a system of ordinary differential equa-
tions in which the desired quantity J is a function of
only one independent variable y, while the coefficients
Uj, Vj of the system are also functions of y for each
fixed value of the coordinate x, The number of ordinary
differential equations in the system depends on the
step, i.e., the chosen degree of accuracy of the so-
lution. Thus, integration of the original energy equa-
tion is reduced to integration of a system of differ-
ential equations, which we will call system (II):

U, J‘A;Ji“Jer cZI; _
= rg( [fi;f J’—iﬁf J3)+4W(Jz),
U 7/ L’i’f—l +V; _‘Z/i =
=, ( ’ny’ + J""“AQ‘Z’;JF I )+qW/(J,-),

=128 4, .. n
with the boundary conditions
J =Jj, when x=x,,

Ji=1J{ when y=y,
Jo=J3 when y=y,,
J;=J] when y=y,

The set of solutions of the system of equations
comprises the solution of the original energy equa-
tion,

The analog computer does not permit us to find
the solution of the system of equations (II) in the
general form, but it does allow us to find the tem-
perature distribution in a two-dimensional space
with specific values of the system coefficients and
boundary conditions.

Results are given below of the integration of sys-
tem (II) in order to determine the configuration of
the flame for a jet of finite width 2by = 60 mm of a
uniform mixture of methane and air (air-fuel ratio
o = 1,87) with initial temperature Ty = 473° K and
veloecity u; = 46.5 m/sec into an infinite accompa~
nying stream of furnace gases having a velocity of
uy = 22 m/sec and a temperature Tpax = 1673° K,
equal to the theoretical temperature for combustion
of the mixture (adiabatic problem).

Using the Vulis hypothesis, in addition to the as-
sumptions indicated above, we will calculate the
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aerodynamic pattern. The width of the dynamicbound-
ary layer in the initial and main sections was deter-
mined by Abramovich's wake formulas [8] with m <
< 0.35 {m = Uy/Uy) and coefficient of initial nonuni-
formity equal to 1.

For the initial section

by = cipx (1—m)/(1+ m), where ¢;;==0.27,
In the main section
b,= 0.22x.

The width of the thermal layer in the initial and
main sections was assumed from the condition that
the Prandtl number o = 0,75, The length of the in-
itial dynamic section, and the attenuation of the val-
ue of U along the axis of the flow were calculated
from the formulas [4]

1
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21243848 2
D) ="T"""5T5 % In(l+B),
® Er g = n{l-+ g
E=p/aAU,, p= mil—m).

For simplicity the transition section was excluded
from examination. The nonlinear coefficients Uj, Vj
of the system in the dynamic boundary layer were
computed analytically according to the relations ob-
tained by Vulis et al. [4] in solving the equations of
motion and continuity for an imcompressible fluid
within the limits of the asymptotic layer for accom-
panying flows,
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where &(z) is the error integral, ¢ =y/ax.
The heat liberated from the chemical reaction was
determined from the equation

E 273 \*
W (T) = gho p COLCY exp | — ——) [ 22 .
gW (T) ‘Ioﬁcmo_P( RT)(T)
Here
Toax— T
CN :CO max ,
CH, CH, -———‘—"Tmax T

and the normal concentration of oxygen Ccl\)rz was found
from stoichiometric relations. The remaining quan-~
tities in the equation were taken from the data of [7].
The transition to the function relation was accom-
plished with the aid of the implicit connection between
the temperature T and the excess enthalpy flux J. Be-
fore integration the system of differentisl equations
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Fig. 1. Block diagram of the set-up for solving the

equations of system (II) on the MN-7 machine: 1, 2,

3, 4) nonlinearity units for reproducing the nonlinear

functions U Jj-1s Jz 2 qW(Jj); 5) product Uj(Jj-, —

- Jj) unit; 6 7 8) d*J; /dy dJ/dy, dy/dt mtegrators,
respectively; 9) adder, 10, 11, 12) invertors.
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Fig. 2. Variation of the flow parameters in the cross
section of the boundary layer of the initial thermal
section X§ =0.236 m at X = 7. 87 (y in mm): 1) tem-
perature T (*K); 2) excess enthalpy J = (p)/%cpAT
(i/m®/? .kg'/?); 3) longitudinal component of effective
veloc1ty u (m/sec); 4) the group V = (p)'/%u (kg'/?/
/m!/?.sec); 5) amount of heat generated by the heat
sources qW(J) (MJ/m? - sec).
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Fig. 3. Variation of the stream parameters along
the flame axis: 1) temperature T (°K); 2) longitu-
dinal component of effective velocity u (m/sec); 3)
the group V = (p)'/ 2 (kg'/%/m'/2- sec); I) boundary
of the initial thermal section; II) boundary of the
flame.
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Fig. 4. Configuration of the flame, temperature fields

in accompanying flows, and edges of the boundary layer
in generalized coordinates: 1) outer edge of the therm-
al and dynamic boundary layer; 2) inner edge of the
thermal boundary layer; 3) inner edge of the dynamic
boundary layer; 4) temperature curves; 5) configura-
tion of flame,
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(I) was somewhat transformed. Thus, due to consid-
erations of the method and the peculiarities of opera-
tion of the machine, we changed the direction of the
axes X, y, and all the equations of the system were
solved for the second derivative. In addition, for sim-
plicity of solution the term (J,—, —2J; + J;,,)/Ah® was
replaced, at the expense of some inaccuracy, by
(Jjmg — 2fj—s + J )/A B2,

The boundary conditions of the initial and main
thermal sections were examined separately. For the
initial section we took the initial conditions to be the
values of J(T) at the outer and inner edges of the
thermal boundary layer:

J=dmax at y=0b,(x),
J=Jo at y=0

For the main section there is only one boundary
condition, namely, the value of J(T) at the outer edge
of the boundary layer.

As the initial condition, we assumed a uniform dis-
tribution of J along the y axis for each x; of the sec-
tion where the combustion finished, since if it is sup-
posed that the gas-air mixture is ignited, then at any
distance from the exit section of the burner, the tem-
perature is equilibrated in the transverse section and
will be equal to the theoretical value.

As has already been noted above, the quantities
U;, Vi Ji—y, Jj—2 are nonlinearly dependent on y at a
fixed value of x, while the term for heat generation
of the chemical reaction qW is a function of J. Con-
version of these functions during integration of the
differential equations of the system was carried out
by nonlinearity units,

The MN-7 analog computer can model differential
equations containing up to four nonlinear relations
which are functions of a single variable or of a prod-
uct, while in the differential equations of system (1I)
there are five nonlinear relations and one product.
Therefore, an attachment was devised to allow the
machine to include an additional nonlinearity unit; in
addition, the function Vj was approximated with the
aid of two amplifiers,

The problem under examination was solved accord-
ing to the block diagrams of Fig, 1, separately for
the initial and main thermal sections, in the following
sequence. The position of the initial section, in which
the combustion process finishes, is not known. There-~
fore the distribution of excess enthalpy flux (or tem-
perature) in the main section was determined by a
successive approximation method, using as boundary
condition values of J on the axis at the end of the in-
itial section. This method was as follows. We assign
arbitrarily the position x; of the section with uniform
distribution of Jy,4y, equal to the theoretical excess
enthalpy. Taking the step equal to 0,025 m, we find
the excess enthalpy flux distribution in the section
located 0.025 m closer to the burner, by integrating
the first equation of system (II) and assuming din-{ =
= Jin. Integration was carried out according to the
above block diagram, the value of the excess enthalpy
flux on the axis of the main section being determined
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by trial and error (varying the value of J on the axis),
using the other boundary condition—values of J at the
outer edge of the boundary layer, i.e., the value of

J on the axis was chosen in such a way that the other
end of the curve of integration reached the assigned
value of J at the outer edge.

Having determined J; =f(y), we found the excess
enthalpy flux distribution in the next section x; = Ah,
and so on, up to x = 0.236 m (the end of the initial
thermal section). If the value of J in the section x =
= 0,236 m on the jet axis is equal to Jy, then the po-
gition of the section with uniform distribution of Jygx
has been assumed correctly; if not, then another
position of the initial section with J = Jygx is as-
signed.

The distribution of excess enthalpy flux in the
boundary layer of the initial thermal section is ob-
tained directly, since the value of J at the internal
-and external boundaries is assigned. As the initial
condition we took the distribution J = J(y) at the end
of the initial thermal section, which was obtained
from the solution of the main section.

To confirm the validity of the results of solution
of system (II) and of the correctness of choice of the
value of the coefficient eT:, the equations of system
(II) were also solved without thermal sources. Com-
parison of the results of these solutions with the
Imown curves of distribution of T along the y axis
confirmed the validity of the solutions obtained.

It is seen from Fig. 2 that the combustion process
occurs only in a small part of the section, 10-15mm,
maximum heat release of the internal sources being
observed not at the maximum temperature, but some~
what below this, approximately at T = 1473 ° K. It
should be noted that the graph of distribution of the
longitudinal component of the effective velocity has a
sharply pronounced bulge.

The curves presented in Fig. 3 are of considerable
interest, It is characteristic that the curves of dis-
tribution of temperature along the axis of the jet, as
well as of the longitudinal component of the effective
velocity, have a less steep rise than in the transverse
section,

The graphs of temperature distribution in trans-
verse sections of the accompanying flows, and also
the general configuration of the flame according to
maximum heat release are given in Fig, 4.

NOTATION

u and v are the longitudinal and transverse com-~
ponents of the effective velocity; v is the specific
weight; p is the density; cp is the specific heat at
constant pressure; AT, AC are the excess tempera-
ture and concentration; &, and £T are the dynamic
and thermal coefficients of turbulent transfer; R, E
are the gas constant and activation energy; q is the
heat generation of chemical reactions; W is the rate
of chemical reaction; 08}14, C&, C%JH,,’ C‘bz are
the concentrations of methane and of oxygen, variable
and initial, referred to normal conditions; 2b, is the
width of the jet; x$, x are the lengths of initial
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dynamic and thermal sections; by, b is the width
of dynamic and thermal boundary layers; « is the
air-fuel ratio; i is the enthalpy.
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